Table 4.—Visibility with surface wind velocity | 5.4 m. p. s. : | More than 5.4 m.p s. | | | | | | | |--------------------------|----------------------|--------------------------------|---------------------------------|-----|--------------------------------|--|--| | Visibility | Less
than— | Percent-
age fre-
quency | Per cen t
of occur-
rence | | Per cent
of occur-
rence | | | | | Miles | | | | | | | | Very bad | 200 | 1 | 1 | 10 | 1 (| | | | Bad | 500 | 2 | 1 | 10 | 1 (| | | | Very poor | 1,000 | 3 | 1 | 1 | 1 | | | | Poor | 2,000 | 5 | 2 | 4 | 1 8 | | | | Indifferent | 4,000 | 9 | 4 | 10 | (| | | | Fair | 7,000 | 37 | 28 | 37 | 27 | | | | Good | 12,000 | 92 | 55 | 91 | 54 | | | | Very good | 30,000 | 100 | 9 | 100 | { | | | | No. of observations, 913 | | | | | No. of observations,
1,074 | | | ¹ Less than 0.5 per cent. Table 5.—Visibility with 0.5 or more of sky obscured by low clouds | | Visibility | | | | | | | | | |--|-------------|-----|--------------|-------|------------------|------------|--------|--------------|--| | | Very
bad | Bad | Very
poor | Poor | Indif-
ferent | Fair | Good | Very
good | | | Less than (meters). Per cent of occur- rence Per centage fre- quency | 200 | 500 | 1,000 | 2,000 | 4,000 | 7,000 | 12,000 | 30,000 | | | | 1 | 2 | 3 | 6 | 10 | 3 5 | 38 | 5 | | | | 1 | 3 | 6 | 12 | 22 | 57 | 95 | 100 | | TABLE 6.-Visibility with low clouds between 250 m. and 1,000 m. altitude [From a total of 730 observations] | İ | | | A. | м. | P. M. | | | |---|--|--|----------------------------------|--|-----------------------------------|--------------------------------|--| | | Visibility less
than— | | Number
of obser-
vations | Percent-
age fre-
quency | Number
of obser-
vations | Percent-
age fre-
quency | | | | Meters 200 500 1,000 2,000 4,000 7,000 12,000 30,000 | Feet 650 1,600 3,300 6,600 13,100 23,000 39,400 98,400 | 0
1
2
3
7
31
9 | 0
2
5
16
24
80
96
100 | 0
0
0
4
7
17
17 | 0
0
9
25
62
100 | | Table 7.—Visibility with clouds and fog lower than 250 m. | | | Feet | | A. M. | | P. M. Number of observa- tions with— | | | |------------|--|--|----------------------------|-----------------------|----------------------------|---------------------------------------|-----------------------|----------------------------| | Visibility | Meters | | | ber of ob
ons with | | | | | | | | | Light
fog | Dense
fog | Low
clouds | Light
fog | Dense
fog | Low | | Very bad | 200
500
1,000
2,000
4,000
7,000
12,000 | 650
1, 600
3, 300
6, 600
13, 100
23, 000
39, 400 | 0
0
3
2
0
0 | 3
5
0
0
0 | 0
0
0
1
6
5 | 0
0
2
1
0
0 | 0
0
0
0
0 | 0
0
2
0
0
1 | ## A GRAPHIC AND TABULAR AID TO INTERPRETING CORRELATION COEFFICIENTS By J. F. VOORHEES 551.501 [Weather Bureau, Washington, D. C.] A graph and a table are presented herewith, which have been found helpful in correlation studies, because through the use of either of them one may see at a glance what a given value for r is worth for forecasting purposes (1). Suppose we have the value $r=\pm .60$ for a given set of data. Applying the formula y'=bx-a, where x is the independent variable, and where $b=\frac{n(\Sigma Xy)-(\Sigma X)(\Sigma y)}{n(\Sigma X^2)-(\Sigma X)^2}$ and $a = \frac{\sum y - b \sum X}{n}$, (2) we obtain the values that y would have if x were the only independent variable. If we now compute the σ of the residuals (y-y') it will be Fig. 1.—Showing value of $1-\sqrt{1-r^2}$, which equals the per cent by which the σ (y-y') is less than σy , for values of r from 0 to 1 found to be 80% of the σ of y. That is, when $r = \pm .60$, $\frac{\sigma(y-y')}{\sigma} = 80\%$ of the σ of y, or the $\sigma(y-y')$ is 20% $\frac{\sigma(y-y')}{\sigma y} = \sqrt{1-r^2}$, and less than the σy . $1 - \frac{\sigma(y - y')}{\sigma n} = 1 - 1 \sqrt{1 - r^2}. \quad (3)$ Plotting the values of $1 - \sqrt{1 - r^2}$ against the values of r, we get the curve shown in the figure, which is an arc of a circle. The table may be obtained from the graph or calculated by the formula, % reduction of $\sigma = 1 - \sqrt{1 - r^2}$, and represents the percentage by which the $\sigma(y-y')$ is less than the σy , for all values of r from 0 to 1.00. Table 1.—Value of $1-\sqrt{1-r^2}$, which equals the per cent by which $\sigma(y-y')$ is less than σy , for values of r from 0 to 1. | г | $1-\sqrt{1-r^2}$ | r | $1-\sqrt{1-r^2}$ | r | $1-\sqrt{1-r^2}$ | r | $1-\sqrt{1-r^2}$ | |----------------------------------|----------------------------|----------------------------|--|----------------------------|-----------------------|----------------------------|-----------------------| | 100
99
98
97 | 100
86
80
76 | 75
74
73
72 | 34
33
32
31 | 50
49
48
47 | 13
13
12
12 | 25
24
23
22 | 3
3
2 | | 97
96
95
94
93
92 | 72
69
66
63
61 | 71
70
69
68
67 | 34
33
32
31
30
29
28
27
26
25
24
23
22
22
21
20
20
19
18
17
16 | 46
45
44
43
42 | 11
11
10
10 | 21
20
19
18
17 | 3332222221111 | | 91
90
89
88
87 | 59
56
55
53 | 66
65
64
63 | 25
24
23
22 | 41
40
39
38 | 9
8
8
8
7 | 16
15
14
13 | 1
1
1 | | 87
86
85
84
83 | 51
49
47
46
45 | 62
61
60
59
58 | 22
21
20
20 | 37
36
35
34
33 | 7
6
6 | 12
11
10
9 | 1
1
0 | | 82
81
80 | 43
41 | 57
56
55
54 | 18
17
16
16 | 32
31
30
29 | 6
5
5
5 | 8
7
6
5 | 1
0
0
0
0 | | 79
78
77
76 | 40
39
38
36
35 | 53
52
51 | 15
15
14 | 28
27
26 | 4
4
3 | 3
2
1 | 0 | ## LITERATURE CITED (1) DINES, W. A. 1915. FORECASTING WEATHER BY MEANS OF CORRELA-TIONS. Meteorological Magazine, vol. 50, p. 30. (2) MARVIN, C. F. 1916. ELEMENTARY NOTES ON LEAST SQUARES. Mo. Wea. Rev., 44:551. (3) YULE, G. U. 1924. AN INTRODUCTION TO THE THEORY OF STATISTICS p. 177.